A proton of velocity $\left( {3\hat i + 2\hat j} \right)\,ms^{-1}$ enters a magnetic field of  $(2\hat j + 3\hat k)\, tesla$. The acceleration produced in the proton is (charge to mass ratio of proton $= 0.96 \times10^8\,Ckg^{-1}$)

  • A

    $2.88 \times {10^8}\left( {2\hat i - 3\hat j} \right)\,m/s^2$

  • B

    $2.88 \times {10^8}\left( {2\hat i - 3\hat j + 2\hat k} \right)\,m/s^2$

  • C

    $2.88 \times {10^8}\left( {2\hat i + 3\hat k} \right)\,m/s^2$

  • D

    $2.88 \times {10^8}\left( {\hat i - 3\hat j + 2\hat k} \right)\,m/s^2$

Similar Questions

A charged particle of mass $m$ and charge $q$ travels on a circular path of radius $r$ that is perpendicular to a magnetic field $B$. The time taken by the particle to complete one revolution is

  • [AIEEE 2005]

One proton beam enters a magnetic field of ${10^{ - 4}}$ $T$ normally, Specific charge = ${10^{11}}\,C/kg.$ velocity = ${10^7}\,m/s$. What is the radius of the circle described by it....$m$

In the product

$\overrightarrow{\mathrm{F}} =\mathrm{q}(\vec{v} \times \overrightarrow{\mathrm{B}})$

$=\mathrm{q} \vec{v} \times\left(\mathrm{B} \hat{i}+\mathrm{B} \hat{j}+\mathrm{B}_{0} \hat{k}\right)$

For $\mathrm{q}=1$ and $\vec{v}=2 \hat{i}+4 \hat{j}+6 \hat{k}$ and

$\overrightarrow{\mathrm{F}}=4 \hat{i}-20 \hat{j}+12 \hat{k}$

What will be the complete expression for $\vec{B}$ ?

  • [NEET 2021]

Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field $B = B_0 \hat k$ .

A particle of mass $m$ and charge $q$ is thrown from origin at $t = 0$ with velocity $2\hat{i}$ + $3\hat{j}$ + $4\hat{k}$ units in a region with uniform magnetic field $\vec B$ = $2\hat{i}$ units. After time $t =\frac{{\pi m}}{{qB}}$ , an electric field  is switched on such that particle moves on a straight line with constant speed. $\vec E$ may be